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Friction and second-order phase transitions
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A microscopic model is studied numerically to describe wearless dry friction without thermal fluctuations
between atomically flat contact interfaces. The analysis is based on a double-chain model with a Lennard-Jones
interaction between the chains which are the respective upper flexible monolayers of the rigid bulk systems.
Whereas below a critical interaction strengththe system exhibits a frictionless state, it offers static friction
abovee.. Introducing an appropriate order parameter function we demonstrate the analogy of the critical
behavior to a phase transition of second order. The order parameter is related to a hull function describing
uniquely the incommensurate ground state of the model. The breakdown of analyticity of the hull function is
identified with the phase transition. Critical exponents are calculated and the validity of finite-size scaling is
displayed.
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[. INTRODUCTION One of the simplest microscopic systems is given by a
discrete version of the well-known Frenkel-Kontoro\K)

The study of friction is a long-standing problem in phys- model[23]. That FK model describes harmonically coupled
ics which has encountered renewed interest recently in difparticles on a chain under the influence of an additional pe-
ferent contex{1-5]. There are several ways to analyze fric- riodic potential. It is mainly used to discuss the adsorption of
tional phenomena. Based on experimental observations tremonolayer on an atomically flat clean substrate surface. In
frictional behavior can be characterized by an empirical forthe case of a constant external force, applied to each particle
mula such as the Coulomb-Amonton lapd. Macroscopi- of the chain, this driven FK model can also be used as a
cally, one can usually observe that two solids are slid passimple model for wearless frictiof®—11]. Notice that several
each other under suffering wear. But wear seems not to behysical phenomena such as the motion of dislocations in
necessary for the occurrence of friction. In the last few years¢rystals[24], the commensurate-incommensurate transition
technological developments have made it possible to stud?5,26, and charge-density wavéEDW's) 27,28 could be
wearless dry friction between atomically flat contact inter-investigated with modified FK models. The FK model is ap-
faces experimentallynanotribology [6—8]. These experi- parently a good starting point for constructing more complex

ments on a nanoscale have stimulated theoretical efforts iPiICtlon models on the atomic level. Thus, a natural extension

investigating friction phenomena within microscopic models® theé FK model consists of replacing the rigid substrate
[9—17_|.gRecgentIy[18]pfriction has been studied 51 carbon (hard body by a deformable substrate monolayer pinned to a

: . . olid (soft body. Such a more refined microscopical model
nanotupe§ based on e)fperlmental obsc_ervathns W'th t f friction was introduced by Matsukawa and Fukuyama
transmission electron microscope technique in multiwall

: NN -~ [12,13. They considered a one-dimensional model com-
nanotubeg19]. Obviously, the dissipative nature of friction posed of two deformable interacting harmonic chains, where

i.S a typical nongquilibriu_m_problem. Based on that o_bserva— ach particle of the lower chain is harmonically pinned to a
tion the Langev!n deslcrlpngn S?.ems to be a core]viment to igid solid. The static and kinetic properties of this two-chain
on a mesoscopic scale and at finite temperat{#8s22 10 \q4g| of friction were analyzed in great detail [ih4,15.
attack the problem. Contrary to that approach we analyze gpe mentioned modeld2—13 are involved in a larger class

microscopic mo_del, in which the wearle_ss dr_y friction be- of systems, classified as the Frenkel-Kontorova-Tomlinson
tween two atomic flat layers can be explained in terms of th‘?FKT) model. The FKT model, introduced by Weiss and
Aubry transition using a simple driven many-body system OMEmer [16,17, describes Wea}less dry friction between

a lattice with an appropriate interaction_. Based on an ir“?O,méltomically flat bulk materials where the adsorbated mono-
mensurate structure the Aubry transition or the analyticity,

) oo ; o layer is replaced by a substrate. It is likewise a one-
breaking transition is equivalent to the breakup of tori in the i ansional lattice model for a soft upper body sliding on a
standard map, which can be related to a transition betwe

. o . €ard lower body. In contrast to the two-chain model, the
the so-called superlubrlglty and the friction regime at a Criti-taature of the EKT model is a harmonic coupling of each
cal value of the interaction strength. particle of the adsorbate monolayer to an upper sliding mass,
assumed to be a macroscopic one, whose position, relative to
the lower surface, is characterized by the coordixgteRe-
*Electronic address: mario.einax@physik.uni-ulm.de markably, in all these one-dimensional microscopic friction
"Electronic address: trimper@physik.uni-halle.de models the particles within the chain are allowed to move
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only parallel to the direction of an applied external force. |
The stationary states for the FK mod@b,3Q and the FKT ¥ ex
models[12-1§ in the absence of external forces have been ////////////// —F
studied in detail using the so-called hull function. One finds 2L Ca

a continuous hull function in case of incommensurate chains® ks

below a critical strength of the interaction between the chain 7 K 4 vem e

and substrate. As a consequence, a certain ground state ciy, 4 N
be continuously transformed into another ground state with- | ky A
out cost of energy. Such a behavior is denoted as an uny b
pinned phase related to the superlubricity regime. On the ® ks 3 o -

other hand, above the critical interaction strength, the hull o /////////////// x

function for the incommensurate chains develops an infinite

number of discontinuities. Thus, a ground state cannot be F|G. 1. A schematic picture of the two-dimensional double-

smoothly evolved from another ground state. chain model. The external forde® is given by the applied force

Ir_' t_he pre_sent paper we investigate numerl_cally & MOr&ex\yhich acts on each particle of the upper chain times the particle
realistic version of the Frenkel-Kontorova-Tomlinson model, ,\bern. of the upper chain, wher, (N,) is the particle number
a ’ a

[16] with a deformable substrate. The two interacting atomic s o upper(lower) chain.
chains are embedded in a two-dimensional space. Botﬁ

monolayers at the corresponding contact interface are elasﬁi- .
cally coupled to the underlying rigid bodies. Additionally, we large wavelengths, while the long-wavelength modes of the

assume a Lennard-Jones-like interaction between the cofflcOmmensurate unpinned phase converge to zero. This

stituents of both chains. This mutual interaction between th&€ans that an unpinned incommensurate phase corresponds
to zero static friction whereas the pinned incommensurate

double chains is figured as the internal driving force. We . ; . o
demonstrate the existence of a critical coupling strengthphase is equivalent to a finite static friction. Remarkably, the

above which the system offers friction. Whereas below the!!!! function and its analytical properties offer only a rather
formal view of the mathematical background. Our analysis

critical interaction strength an arbitrary small external force hat th ¢ th .
leads to a global sliding motion of both monolayers againsSU99€sts that the concept of the order parameter is better

each otherdenoted as frictionless motigii6]), above the dualified for understanding the physical mechanism.
critical interaction both chains are in a locked state: i.e., a Notice that another approach is used[Bi], however
finite external force is necessary to overcome the pinnet!ith @ special total potential energy relevant for a gold/gold
state(friction). The phenomenon is interpreted as a kind ofinterface. While in[31] the interaction is affected by an ex-

phase transition which is visualized by introducing an appro{€"nal compression, which can lead to friction, we have stud-

priate order parameter function. Remarkably, this phase trar’ed the case that the chains interact under their own adhesive
sition is different from a conventional phase transition. This'0ad- Whereas our approach is restricted to a quasi-one-

is manifested by the relation of the order parameter to agimensional friction model there exist also calculations in
so-called hull function. This function describes uniquely theNigher dimensions such §21,32,33. A transition to a finite

ground state of our model. Above the critical interactionStatic friction was observed if21] and[32], but the order of

strength the hull function changes from an analytical func-the transition was not discussed. The near-commensurate be-

tion to nonanalytical one, which was demonstrateq3). ~ navior, described i33], is quite different from the work
Thus the transition is characterized by breaking of the anaconsidered here.

lyticity of the hull function and corresponds to the onset of

stochasticity in the standard map. Adopting that concept we Il. MODEL

analyze the model, introduced above, in terms of the hull A. Double-Chain model

function. Our main focus is to study the transition by calcu- ) )

lating the hull function. We demonstrate numerically the Following Matsukawa and Fukuyanfa?,13, we intro-
breaking of the analyticity and show that in terms of theduce the double-chain model as a two-dimensional micro-
order parameter the phenomenon is similar to the behavior OPIC lattice model system describing wearless dry friction
a second-order phase transition. Here we carry forward aRetween two atom|callly flat .soI|ds. Therefore, we consider
idea proposed by Coppersmith and Fis[®%,29. Different two deformable atomic c_;halns, denpted as the_ upper_and
to that approach our analysis is concentrated on the incorﬂo"‘{er chains. The atoms in each chal_ln are_classmal particles
mensurate ground state. In particular, we calculate criticavhich are able to perform a two-dimensional movement.
exponents and demonstrate the validity of scaling propertieEurther, we assume a harmonic interaction of the particles
for finite systems. Notice that the present model class is quit#ithin each chain. The interaction between the two chains is
different to the approaches of driven disordered interfaces i§UPPosed to be of Lennard-Jones type. Moreover, both
contact with the surface of substrates and their critical rechains are coupled harmonically to an upper or a lower sub-
gimes. The present model deals with ground-state equatioriérate, respectively. The situation we have in mind is de-
offering a transition equivalent to smooth or chaotic orbits inpicted in Fig. 1. The external forde®* is pulling the chains

the standard map below and above a critical interactiorpart whereas the mutual interaction is pushing the surface
strength. In that context, the system offers above the criticaiogether. The Lennard-Jones potential prevents direct contact
interaction strength a finite gap in the excitation spectrum foiof the atoms of the chains. Denoting the two-dimensional
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position vectors of théh particle in the upper or lower chain strength of the interaction ana is a characteristic length
by ri=(¢,y?) and rib=(xib,yf’), the equilibrium state is de- scale, by which the minimum of the potentialrgtin Eq. (7)

fined by the solutions of can be parametrized. It results rig= 26,
Ny Our studies are restricted to a region at low temperatures
XA A oudl LAy [VA X roa_ b where thermal effects can be neglected. Such a situation
0 =ka[ X1 +Xhq = 267] = kg7 —ical + gl Fin04 =), is realized experimentally in nanotubgd9]; compare
also[18].
(1)
0 =Ky, +y2, - 2y - K& [y? - (by + Lo)] B. Numerical method

Np In this subsection we introduce the numerical method. For
+> Fiym(yia—y}’), (2)  solving the two-dimensional double-chain model periodic
j=1 boundary conditions in both chains are applied:

N I

a X =X,y — L, 8
0=k s+~ 21K~ ie)+ 3 06 ), T ?
]:
) Vi = Vi, )
Ny o ) )
0=K[Y>, +y°. - 2P - Ky [y — b ]+ S FY (vP - yA), wherel =a,b means the chain index amg=N;c, is the chain
Vi +Yia = 2]~ Kt Y7~ bl gl = Y)) length. Consequently, the system sizes of the upper and

(4) lower chains are the same=N,c,=N,c,. Hence, the ratio
of the two lattice constanisnisfit) could be expressed by the

whereN, (N,) is the particle number andj, (c,) is the mean particle numbers

atomic spacing in th& direction of the uppe¢lower) chain.

For a compact representation one can introduce the chain ca Ny

index|=(a,b) relating to the upper and lower chaikg.and a=—""=7"

ki are the strength of the harmonic interaction force in the

chains forthex andy directions. The strength of th_e coupling In, that manner the ratia of the two lattice constants is

of each chain to an upper and a lower substrate is represent

by ki, andkl,, which determine the rigidity of the chains. A

further system parameter is the substrate-substrate distan

er:ba;.bbﬂ‘o’ vghereba (btr’]) is the rlgean atﬁ”.“c spgcmgs n ing model system. Following Aubri29,30 the incommen-
the y direction between the uppelower) chain and Upper o, e state s realized by an irrational ratibetweerc, and

(lower) substratesl., denotes the mean distance between the.  tha behavior of the system is described by a so-called
two harmonic chains tuned in a self-consistent manner due tﬁb

. . ) - ull function which will be introduced in the subsequent sec-
the Lennard-Jones interaction. The interaction force betwee{iwon This function loses its mathematical usefulness for ra-
the upper and lower chains, projected on ¥handy axes, ;

b . tional «. The ground state of the system is an incommensu-
can be written as rate one, related to an irrational valaeof the two lattice

: 10
& N, (10

Sﬂ/vays a rational number within the numerical realization.
The subsequent analysis is based on the concept of the hull
fifhction which characterizes the ground state of the underly-

Ny N, (X =) constants. Obviously it is necessary in the numerical imple-
>R —xf) => F(rj)———, (5) mentation to approximate an irrational number through an
j=1 =1 Fij optimal ratio of two natural numbers. This will be realized
by a finite continued-fraction expansion up to a certain order
N N v -v) [34,35:
2 Fhyi _YjJ) => F(rij)#]_. (6)
=1 =1 ij
1
with the chain indice$=(a,b) andJ=(b,a) and the distance a=agt 1 (11
i =Ird=r?| = (x*—x3)2+(yP-y?)? relating to theith atom of a + 1
the upper(@) and thejth atom of the lowexb) chain.F(r;;) a,+
can be expressed by the potenti(r;;) through F(r;) cee ¥ 1
=-dV(rj)/ar;;. As interaction potential we choose specifi- +£
cally the Lennard-Jones potential An-1 a,
o 12 o 6
V(ri;) :46{(F) - (r) } (7)  We choose the simplest continued-fraction expansion with
g g a,=1 anda;=a,=---=a,=1, so thata could be expressed

representing the character of the friction due to the intermoby the ratios of Fibonacci numbefs,,;=F,+F,_;, where
lecular forces in the most appropriate way. Herés the n=1,2,3,... asvell asF,=1 andF;=1. Hence,

046113-3



EINAX, SCHULZ, AND TRIMPER PHYSICAL REVIEW E70, 046113(2004)

_Fnp_ 358 1321345589 144 233 377 610 987 1597 (12)
“n T F.,, 2'3'5'8'1321'34'55 89144 233377 610 987"

and the irrational limit a.,=lim,_.(Fp.o/Fre1) =1/2(J5 he(z+Cy) =hy(2) =—hy(—2), hy(z+cy) =hy(2) =-hy(-2).
+1) of the approximation serieg€l?) is the inverse of the (19)
so-calledgolden meanFrom the point of view of humber

theory [?ﬂ, this is the soonest incommensurable case of th%’he argument of h, andh, is defined in the range from 0 to
underlying model system, which could be emulated in a sys(-:b, whereas oh, andhy it is given from O toc,. Note that the

tematic way. In our StUd'fs we set the lattice constant of thg;g ajization concept of the hull function makes it necessary
Iower chaln_equql to 1c,=1). Accordingly, the UPPEr Mean .5t the arguments of the just-defined hull functibgsh. or
lattice spacingr, is equal toa, and we calculated with the "5t be the same, respectively, because the displace-
system sizes ments in thex andy directions of all particles in each chain
N, 89 233 377 610 1597 can be assigned to different values of the argunzeshie to
Ca= N = 55'144' 233 377 087 (13 the irrational ratioa of the mean lattice spacing, andc,.
a First, we have numerically calculated the ground state of

It should be mentioned that not all ratios of the approximatedl€ double-chain mode] for a fixed ratig,=N,/N, of par-
are “good” irrational number approximations. In order to dis- ¢l numbers given biN,=233 andN,=377. Several inves-

cuss the essential features of the present model we restriti@ations of the FK modej30] and FKT mode[16] as well
the wide range of model parameters by settidgk/=1, as the two-chain moddll5] showed that the ground state

leX = Kly =1, ande=1. For calculating the stable stationary depends strongly on _the intergction strengtﬁ'h_erefore,_we
st;tess\L/jve have used a relaxation procedl&: started the computation for different valueseoin the wide

range from 0.05 to 0.4. For small valuesefip to a certain
value ¢, we get the result that the periodic hull functidms
IIl. NUMERICAL RESULTS hy, he, andhy are analytic—i.e., smooth and continuous. This
behavior is illustrated in Fig. 2, where the interaction
o strength has the value=0.22. Furthermore, the stationary
Similarly to the FK mode[29] or FKT model[16], the  state fore=0.22 is characterized by the mean distahge
lattice structure of the particle positions in the incommensu~q 986 273 between the upper and lower chains. Figure 3
rate ground state can be uniformly described by a hull funcshows another numerical calculation of the hull functions for
tion. For examining the lattice structure of the present two+the interaction strengte=0.33 with the corresponding mean
dimensional double-chain model, it is necessary to intrOdUCEistanceL0:0.959 584. We can observe that the hull func-
four hull functions due to two degrees of freedom of thetions in Fig. 3 are discrete, which means that they are no
particles in each chain. The two hull functiohgandh; of  |onger analytic. This discrete structure is related to jumps,
the upper chain are defined as which occur at certain points of the argumenof the hull
Q. ) functions. Now, comparison of Fig. 2 with Fig. 3 shows the
Xi=icat d+hylicat @), (14) phenomenon of breakdown of analyticity, which is due to
two significant aspects of the hull functiohg hy, h, andhg
yi=b,+ Lo+ @' +hic,+ o), (150  for the interaction strengths< e, and e> €., which defined
a certain transition value. above which the hull functions
and the two hull function$), andhg of the lower chain are  are no longer analytic. For a detailed analysis of the thresh-
given by old e, we introduced a suitable order parameter in the fol-
lowing part.
Peyrard and Aubry have show80Q] that the breaking of
analyticity of the incommensurate ground state of the FK
yP=by+ ¢ +hyli cp+ 4), (170  model is characterized by the existence of a largest central
gap at half the period of the hull function. The situation in
V\l/)hemd), g)', i, andy’ are constant phases. Note thaty?,  the two-chain model of Matsukawa and Fukuyafia] is
X7, andy; are the actual positions of the particles in thequite different for several elastic parameters. Two simple
ground state under the influence of the interaction. For ougases are observed) eitherh, or h, has the largest central
investigations, it is convenient to s¢t=¢’'=¢=4'=0. The  gap and(ii) both hull functions do not have the largest cen-
hull functions are periodic and even, which can usually beral gaps, but two symmetrical gaps with the same size refer-

A. Hull function

X' =i Cy+ g+ hi(i o+ 4h), (16)

expressed by ring to half the period. In Fig. 3 we observe also no largest
B B B : central gap for all hull functions of the two-dimensional
ha(z+¢p) =ha(2) = —Na(=2),  he(z+cy) =h(2)=-he(-2),  gouble-chain model. Furthermore, the hull functions show

(18 also two symmetrical gaps of the same size referring to half
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FIG. 2. The hull functions of the ground state plotted for particle numbNgrs233 andN,=377 with interaction strengtb=0.22. For a
uniform representation all hull functions are renormalized by the mean lattice spagiagdc,, respectively. Therefore, the substitution for
the hull functionh, andh; of the (a) chain isz— z/c,, whereas for the hull functions, and hy of the (b) chain it isz— z/c,.

the period of the hull function in the whole parameter rangevary the system size of the underlying model which corre-
analyzed. Up to now we have only investigated the groundsponds the different approximation orders of the irrational

state structure for a fixed system sigd,=233 andN,
=377) and a certain range of interaction strengtiNow, we

=h(z)

h&

h(2)

h=

number through a rational ratio of the particle numbers.
Here, we calculated especially the ground-state structure for
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FIG. 3. Hull functions of the ground state fer0.33 and particle
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FIG. 4. Artifacts in the hull functions for a bad choice of particle numbers—e.g., giveN3»877 andN,=610—and interaction
strengthe=0.33.

the ratiosw,=89/55, 233/144, 610/377, and 1597/987 inthe mean distanck, is remarkably insensitive to the system
the same range of interaction strengtlike above. In par- size. For the system size&,=377/233, 610/377, and
ticular, we investigated whether there occurs an anomaloug597/987 we find a deviation foly=Ly(a) smaller
behavior in the structure of the hull functions for certainthan 105.
values ofe due to the use of a rational ratio instead of an
irrational number in the numerical computation. Indeed, Fig.

4 shows such an anomalous behavior of the hull functions

for €=0.33 and for the particle numbekg =377 and 610. In Now, let us analyze the breakdown of analyticity near to
comparison with Fig. 3 we can recognize that the even parthe thresholds, in analogy to a phase transition of the second
ticle numberN,=610 generates a “strange” particle position order. The first step towards a quantitative theory of continu-
at half the periodz=0.5 of h,, in Fig. 4 and other special ous phase transitions is to identify an order parameter by
points. Such not fully understandable artifacts can be alswhich the phases involved in the phase transition are distin-
observed for other ratiog,, and interaction strength. On  guished. Whereas the order parameter is zero in the disor-
the assumption that the main structure of the hull function iglered phase, it is nonzero in the ordered phase. With regards
conserved in course of the approagh— «., for a fixed in-  to the breakdown of analyticity, the nonzero order parameter
teraction parametet (at least above a sufficiently large appears in the discrete phase, which measures the discrete
we conclude that only more details can be observed witfumps in the hull functions. Our numerical results offer that
decreasing differencéy,—a.|. Thus, a change of the fine the breakdown of analyticity can be completely discussed in
structure—i.e., the creation of new small gaps may bderms of the hull function, instead of calculating the gap in
possible—but larger gaps observed first for smalre fixed.  the phonon spectrum as done[B0]. In the cases< ¢, the

The appearance of pointlike artifacts in some gaps for ®@rder parameter is zero whereas it is nonzero alegvidere,
given interaction energy can be observed for some values we use the definition

B. Order parameter

of n. However, there is neither a stabilization of this phenom- 1 5

enon above a sufficiently large nor a change of the main f if(2 dz

structure of the hull function related to the appearance of 0 Jaz

these artifacts during a systematic approagh- [36]. = a0 (20)

Relating to the stationary state, Figabshows the mean
distancel, between the upper and lower chains as a functiowhere f(z) can be identified with one of the different hull
of strengthe of the interaction force, which was calculated functions. The denominator is meant symbolically as a con-
for particle numberdN,=233 andN,=377. The plot in Fig. tinuous limit. The calculations are performed in a discrete
5(a) shows the computation a&f;, for € in range from 0.05to version with a finite number of particles. In that cas(®)
0.45 and Fig. B) showsL, in the transition area. Note that behaves like 8(0)~(Az)™*=N,. If the hull function is
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0.975 1 distancel in the y direction be-
. . = tween the upper and lower chains
= 0984 . o : : .
- AN - . as a function of interaction
0.970 4 . strengthe. The mean distanck,
0.96 . is plotted in different rangesa)
.. : from €=0.05, ...,0.4 angb) from
0.94 - 0.965 1+ : €=0.24,...,0.31 (transition
’ ) range.
0924
} f f } 0.960 } } } t
0.0 0.1 02 03 04 05 024 026  0.28 030 032
€ £
(a) (b)

smooth within the intervdl0, 1], the integral becomes finite parameterd® changes from zero below the critical threshold
and the order parameter vanished due to the prefa¢@r?. €: to a nonzero value abow for all particle number ratios.

On the other hand, if(z) behaves like a Heaviside function This is clear evidence for a phase transition of the second
with a jump atzo, we obtaind,f(z) ~ 8(z—z,) and therefore order. Using finite-size scaling argumer{7,3§ for the

fé [9,f(2)]?dz~ fé 8z-25)%dz~ 6(0)[3 8z-29)~ 80); i.e., data, presented in Fig. 6, the order parameter can be rewrit-
the order parameter becomes finite. Due to the finite syste®n as
size, which divides the region of integration into equidistant BI85 1 U6
subintervalsAz=1/N, (Az=1/N,) for the upper (lower) P(e,L) = LPD(L (e~ €)). (22
chain, the integral in Eq20) is reduced to a sum over the pgejoy ¢_ there is no static friction. This result is in accor-
particle numbers. Therefore, we have intrinsic discontinuitiegygnce with[20-22 obtained by a completely different ap-

in the numerical computation, because the hull functions arg q,ch Analyzing the data for different values of the system
given by a discrete set of points. In order to suppress the

effects of these intrinsic discontinuities, we choose for the

o oo . ) 2.4
numerical investigation the generalized order parameter like- |
wise denoted ad: 224
L v o .
f 7@ %, 20f $ 2 ’
0 624 B
b= 1.8 4 ¢
8(0) i
(Ny-2) 1.6 1~ .
1 Na—2 T °
1.4 4
= 6 Y ([fraa— 4 fras + 6 fi— 4y + fio)2. 1 v
(AZ) k=2 v
g, 124 v
(21 = 1 .
. % 104
It should be mentioned that the order paramdieshows for 1 M
all hull functionsf={h,,hy,h.,hy} the same qualitative be- 0.8l .’
havior. Therefore, in order to present the basic features of the 1 :
phase transitioritransition of the breakdown of analyticjty 0.6 4 v
it is enough to calculateb [via Eq. (21)] for one hull T .
function—e.g.,h,=h,(2). 04+
024 .
C. Scaling behavior 1
I i i 00“.|'.‘.|".'|".°‘I|..|..|..|..|..
n this subsection we present the order paramétede- ——+—+++ -+

fined by Eq.(21), for different system sizesy,=89/55, -150 -100 -50 0 50 100 150 200 250
233/377, 610/377, and 1597/987. Figure 6 shows the orde (ee) L™

parameter as a function of the interaction strengin the

transition region. The results indicate clearly that the order FIG. 6. Order parameteb(e)L”'? versus(e—e,)L1°.
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size L (compare Fig. § we find that the order parameter mean velocities and the external forces can be writtg23s

offers a scaling behavior in the vicinity of the transition re- _ e

gime. That means that all curves for differdnbffer a data v (F=Fy°, (24)

collapse. The corresponding master curve is depicted in Figyhere is a universal exponent arfg is the threshold force.

6. The system sizé is determined _b_y the p_article numbe_rs In the unpinned statée< ¢,) a ground state can be continu-

55, 233, 377, and 987. In the transition region, characterizegsly transformed into another ground state without any ex-

by the reduced interaction strendth(e—€.)/ €., we find that penditure of energy. Thus the threshold fofeeis zero for

the da_ta of Fig. 6 are consistent with the following scaling < €.. For e> ¢, the broken analyticity prevents a smooth

behavior fore> e evolution between arbitrary ground states; i.e., we expect a
1 B _ _\B finite thresholdF, for this regime.

Pl ~ LT e~ <), 23 Furthermore, it should be remarked that our chain model
where the critical exponents are given 8y 0.239+0.05 and is a simple model structure, which established the macro-
6=0.687x0.05. From this we conclude the rajfic=8/6  scopic dry friction situation on the microscopic level be-
~0.347+0.05. Due to the finite-size scaling, we obtain fortween atomically flat surfaces by using a simply driven me-
the threshold interaction strength of the transition of breakchanical many-body system. It is convenient to define the
ing of analyticity the critical values,=0.25575+0.001. model as simply as possible in order to discuss some basic

features like the ground-state structure or the maximum
static friction behavior. The validity of the underlying model

IV. CONCLUSIONS system is given by the assumption of simple harmonic intra-

We have investigated the ground state for a two-chain and Lennard-Jones interchain interactions. Referring to

dimensional double-chain model with an incommensuratéhe comparison with experiments, another natural extension
lattice structure. We found that the structure of the hull func-Of the present model is to proceed to a three-dimensional
tions depends strongly on the strengtfof the interaction ~System, which is able to describe wearless dry friction be-
between the upper and lower bodies. The breakdown of andween two atomically flat planes pinned in each case to a
lyticity in the ground state for the critical value, Substrate and embedding in a three-dimensional space.
=0.25575 was numerically observed. Furthermore, it was We have only analyzed the situation for a fixed set of
shown that this type of phase transition could be uniformlyelastic parameterk;. In further papers we will investigate
described by an order parameter. This order parameter refis model for a wide range of the parameter set—e.g., the
resentation allows a systematic analysis of the critical behawariation of the rigidity of one chaifk,=1, ... ).

ior for e> €. due to the cglculation of the critical exponents. ACKNOWLEDGMENTS
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