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A microscopic model is studied numerically to describe wearless dry friction without thermal fluctuations
between atomically flat contact interfaces. The analysis is based on a double-chain model with a Lennard-Jones
interaction between the chains which are the respective upper flexible monolayers of the rigid bulk systems.
Whereas below a critical interaction strengthec the system exhibits a frictionless state, it offers static friction
aboveec. Introducing an appropriate order parameter function we demonstrate the analogy of the critical
behavior to a phase transition of second order. The order parameter is related to a hull function describing
uniquely the incommensurate ground state of the model. The breakdown of analyticity of the hull function is
identified with the phase transition. Critical exponents are calculated and the validity of finite-size scaling is
displayed.
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I. INTRODUCTION

The study of friction is a long-standing problem in phys-
ics which has encountered renewed interest recently in dif-
ferent context[1–5]. There are several ways to analyze fric-
tional phenomena. Based on experimental observations the
frictional behavior can be characterized by an empirical for-
mula such as the Coulomb-Amonton laws[6]. Macroscopi-
cally, one can usually observe that two solids are slid past
each other under suffering wear. But wear seems not to be
necessary for the occurrence of friction. In the last few years,
technological developments have made it possible to study
wearless dry friction between atomically flat contact inter-
faces experimentally(nanotribology) [6–8]. These experi-
ments on a nanoscale have stimulated theoretical efforts in
investigating friction phenomena within microscopic models
[9–17]. Recently [18] friction has been studied in carbon
nanotubes based on experimental observations with the
transmission electron microscope technique in multiwall
nanotubes[19]. Obviously, the dissipative nature of friction
is a typical nonequilibrium problem. Based on that observa-
tion the Langevin description seems to be a convenient tool
on a mesoscopic scale and at finite temperatures[20–22] to
attack the problem. Contrary to that approach we analyze a
microscopic model, in which the wearless dry friction be-
tween two atomic flat layers can be explained in terms of the
Aubry transition using a simple driven many-body system on
a lattice with an appropriate interaction. Based on an incom-
mensurate structure the Aubry transition or the analyticity
breaking transition is equivalent to the breakup of tori in the
standard map, which can be related to a transition between
the so-called superlubricity and the friction regime at a criti-
cal value of the interaction strength.

One of the simplest microscopic systems is given by a
discrete version of the well-known Frenkel-Kontorova(FK)
model [23]. That FK model describes harmonically coupled
particles on a chain under the influence of an additional pe-
riodic potential. It is mainly used to discuss the adsorption of
a monolayer on an atomically flat clean substrate surface. In
the case of a constant external force, applied to each particle
of the chain, this driven FK model can also be used as a
simple model for wearless friction[9–11]. Notice that several
physical phenomena such as the motion of dislocations in
crystals [24], the commensurate-incommensurate transition
[25,26], and charge-density waves(CDW’s) [27,28] could be
investigated with modified FK models. The FK model is ap-
parently a good starting point for constructing more complex
friction models on the atomic level. Thus, a natural extension
of the FK model consists of replacing the rigid substrate
(hard body) by a deformable substrate monolayer pinned to a
solid (soft body). Such a more refined microscopical model
of friction was introduced by Matsukawa and Fukuyama
[12,13]. They considered a one-dimensional model com-
posed of two deformable interacting harmonic chains, where
each particle of the lower chain is harmonically pinned to a
rigid solid. The static and kinetic properties of this two-chain
model of friction were analyzed in great detail in[14,15].
The mentioned models[12–15] are involved in a larger class
of systems, classified as the Frenkel-Kontorova-Tomlinson
(FKT) model. The FKT model, introduced by Weiss and
Elmer [16,17], describes wearless dry friction between
atomically flat bulk materials where the adsorbated mono-
layer is replaced by a substrate. It is likewise a one-
dimensional lattice model for a soft upper body sliding on a
hard lower body. In contrast to the two-chain model, the
feature of the FKT model is a harmonic coupling of each
particle of the adsorbate monolayer to an upper sliding mass,
assumed to be a macroscopic one, whose position, relative to
the lower surface, is characterized by the coordinatexB. Re-
markably, in all these one-dimensional microscopic friction
models the particles within the chain are allowed to move

*Electronic address: mario.einax@physik.uni-ulm.de
†Electronic address: trimper@physik.uni-halle.de

PHYSICAL REVIEW E 70, 046113(2004)

1539-3755/2004/70(4)/046113(9)/$22.50 ©2004 The American Physical Society70 046113-1



only parallel to the direction of an applied external force.
The stationary states for the FK model[29,30] and the FKT
models[12–16] in the absence of external forces have been
studied in detail using the so-called hull function. One finds
a continuous hull function in case of incommensurate chains
below a critical strength of the interaction between the chain
and substrate. As a consequence, a certain ground state can
be continuously transformed into another ground state with-
out cost of energy. Such a behavior is denoted as an un-
pinned phase related to the superlubricity regime. On the
other hand, above the critical interaction strength, the hull
function for the incommensurate chains develops an infinite
number of discontinuities. Thus, a ground state cannot be
smoothly evolved from another ground state.

In the present paper we investigate numerically a more
realistic version of the Frenkel-Kontorova-Tomlinson model
[16] with a deformable substrate. The two interacting atomic
chains are embedded in a two-dimensional space. Both
monolayers at the corresponding contact interface are elasti-
cally coupled to the underlying rigid bodies. Additionally, we
assume a Lennard-Jones-like interaction between the con-
stituents of both chains. This mutual interaction between the
double chains is figured as the internal driving force. We
demonstrate the existence of a critical coupling strength,
above which the system offers friction. Whereas below the
critical interaction strength an arbitrary small external force
leads to a global sliding motion of both monolayers against
each other(denoted as frictionless motion[16]), above the
critical interaction both chains are in a locked state; i.e., a
finite external force is necessary to overcome the pinned
state(friction). The phenomenon is interpreted as a kind of
phase transition which is visualized by introducing an appro-
priate order parameter function. Remarkably, this phase tran-
sition is different from a conventional phase transition. This
is manifested by the relation of the order parameter to a
so-called hull function. This function describes uniquely the
ground state of our model. Above the critical interaction
strength the hull function changes from an analytical func-
tion to nonanalytical one, which was demonstrated in[30].
Thus the transition is characterized by breaking of the ana-
lyticity of the hull function and corresponds to the onset of
stochasticity in the standard map. Adopting that concept we
analyze the model, introduced above, in terms of the hull
function. Our main focus is to study the transition by calcu-
lating the hull function. We demonstrate numerically the
breaking of the analyticity and show that in terms of the
order parameter the phenomenon is similar to the behavior at
a second-order phase transition. Here we carry forward an
idea proposed by Coppersmith and Fisher[27,28]. Different
to that approach our analysis is concentrated on the incom-
mensurate ground state. In particular, we calculate critical
exponents and demonstrate the validity of scaling properties
for finite systems. Notice that the present model class is quite
different to the approaches of driven disordered interfaces in
contact with the surface of substrates and their critical re-
gimes. The present model deals with ground-state equations
offering a transition equivalent to smooth or chaotic orbits in
the standard map below and above a critical interaction
strength. In that context, the system offers above the critical
interaction strength a finite gap in the excitation spectrum for

large wavelengths, while the long-wavelength modes of the
incommensurate unpinned phase converge to zero. This
means that an unpinned incommensurate phase corresponds
to zero static friction whereas the pinned incommensurate
phase is equivalent to a finite static friction. Remarkably, the
hull function and its analytical properties offer only a rather
formal view of the mathematical background. Our analysis
suggests that the concept of the order parameter is better
qualified for understanding the physical mechanism.

Notice that another approach is used in[31], however
with a special total potential energy relevant for a gold/gold
interface. While in[31] the interaction is affected by an ex-
ternal compression, which can lead to friction, we have stud-
ied the case that the chains interact under their own adhesive
load. Whereas our approach is restricted to a quasi-one-
dimensional friction model there exist also calculations in
higher dimensions such as[21,32,33]. A transition to a finite
static friction was observed in[21] and[32], but the order of
the transition was not discussed. The near-commensurate be-
havior, described in[33], is quite different from the work
considered here.

II. MODEL

A. Double-Chain model

Following Matsukawa and Fukuyama[12,13], we intro-
duce the double-chain model as a two-dimensional micro-
scopic lattice model system describing wearless dry friction
between two atomically flat solids. Therefore, we consider
two deformable atomic chains, denoted as the upper and
lower chains. The atoms in each chain are classical particles
which are able to perform a two-dimensional movement.
Further, we assume a harmonic interaction of the particles
within each chain. The interaction between the two chains is
supposed to be of Lennard-Jones type. Moreover, both
chains are coupled harmonically to an upper or a lower sub-
strate, respectively. The situation we have in mind is de-

picted in Fig. 1. The external forceF̃ex is pulling the chains
apart whereas the mutual interaction is pushing the surface
together. The Lennard-Jones potential prevents direct contact
of the atoms of the chains. Denoting the two-dimensional

FIG. 1. A schematic picture of the two-dimensional double-

chain model. The external forceF̃ex is given by the applied force
Fex which acts on each particle of the upper chain times the particle
numberNa of the upper chain, whereNa sNbd is the particle number
of the upper(lower) chain.
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position vectors of theith particle in the upper or lower chain
by r i

a=sxi
a,yi

ad and r i
b=sxi

b,yi
bd, the equilibrium state is de-

fined by the solutions of

0 = ka
xfxi−1

a + xi+1
a − 2xi

ag − ksub
ax fxi

a − icag + o
j=1

Nb

Fint
x sxi

a − xj
bd,

s1d

0 = ka
yfyi−1

a + yi+1
a − 2yi

ag − ksub
ay fyi

a − sbb + L0dg

+ o
j=1

Nb

Fint
y syi

a − yj
bd, s2d

0 = kb
xfxi−1

b + xi+1
b − 2xi

bg − ksub
bx fxi

b − icbg + o
j=1

Na

Fint
x sxi

b − xj
ad,

s3d

0 = kb
yfyi−1

b + yi+1
b − 2yi

bg − ksub
by fyi

b − bbg + o
j=1

Na

Fint
y syi

b − yj
ad,

s4d

whereNa sNbd is the particle number andca scbd is the mean
atomic spacing in thex direction of the upper(lower) chain.
For a compact representation one can introduce the chain
index I =sa,bd relating to the upper and lower chains.kI

x and
kI

y are the strength of the harmonic interaction force in the
chains for thex andy directions. The strength of the coupling
of each chain to an upper and a lower substrate is represented
by ksub

Ix andksub
Iy , which determine the rigidity of the chains. A

further system parameter is the substrate-substrate distance
Ls=ba+bb+L0, whereba sbbd is the mean atomic spacings in
the y direction between the upper(lower) chain and upper
(lower) substrates.L0 denotes the mean distance between the
two harmonic chains tuned in a self-consistent manner due to
the Lennard-Jones interaction. The interaction force between
the upper and lower chains, projected on thex and y axes,
can be written as

o
j=1

NJ

Fint
x sxi

I − xj
Jd = o

j=1

NJ

Fsr ijd
sxi

I − xj
Jd

r ij
, s5d

o
j=1

NJ

Fint
y syi

I − yj
Jd = o

j=1

NJ

Fsr ijd
syi

I − yj
Jd

r ij
, s6d

with the chain indicesI =sa,bd andJ=sb,ad and the distance
r ij = ur i

a−r j
bu;Îsxi

b−xj
ad2+syi

b−yj
ad2 relating to theith atom of

the upper(a) and thej th atom of the lower(b) chain.Fsr ijd
can be expressed by the potentialVsr ijd through Fsr ijd
=−]Vsr ijd /]r ij . As interaction potential we choose specifi-
cally the Lennard-Jones potential

Vsr ijd = 4eFS s

r ij
D12

− S s

r ij
D6G , s7d

representing the character of the friction due to the intermo-
lecular forces in the most appropriate way. Heree is the

strength of the interaction ands is a characteristic length
scale, by which the minimum of the potential atr0 in Eq. (7)
can be parametrized. It results inr0=s21/6.

Our studies are restricted to a region at low temperatures
where thermal effects can be neglected. Such a situation
is realized experimentally in nanotubes[19]; compare
also [18].

B. Numerical method

In this subsection we introduce the numerical method. For
solving the two-dimensional double-chain model periodic
boundary conditions in both chains are applied:

xi
I = xi+NI

I − LI , s8d

yi
I = yi+NI

I , s9d

whereI =a,b means the chain index andLI =NIcI is the chain
length. Consequently, the system sizes of the upper and
lower chains are the same,L;Naca=Nbcb. Hence, the ratio
of the two lattice constants(misfit) could be expressed by the
particle numbers

a =
ca

cb
=

Nb

Na
. s10d

In that manner the ratioa of the two lattice constants is
always a rational number within the numerical realization.
The subsequent analysis is based on the concept of the hull
function which characterizes the ground state of the underly-
ing model system. Following Aubry[29,30] the incommen-
surate state is realized by an irrational ratioa betweenca and
cb. The behavior of the system is described by a so-called
hull function which will be introduced in the subsequent sec-
tion. This function loses its mathematical usefulness for ra-
tional a. The ground state of the system is an incommensu-
rate one, related to an irrational valuea of the two lattice
constants. Obviously it is necessary in the numerical imple-
mentation to approximate an irrational number through an
optimal ratio of two natural numbers. This will be realized
by a finite continued-fraction expansion up to a certain order
[34,35]:

a = a0 +
1

a1 +
1

a2 +
1

¯ +
1

an−1 +
1

an
.

s11d

We choose the simplest continued-fraction expansion with
a0=1 anda1=a2=¯ =an=1, so thata could be expressed
by the ratios of Fibonacci numbersFn+1=Fn+Fn−1, where
n=1,2,3, . . . aswell asF0=1 andF1=1. Hence,
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an =
Fn+2

Fn+1
=

3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
,
89

55
,
144

89
,
233

144
,
377

233
,
610

377
,
987

610
,
1597

987
,¯ s12d

and the irrational limit a`; limn→`sFn+2/Fn+1d=1/2sÎ5
+1d of the approximation series(12) is the inverse of the
so-calledgolden mean. From the point of view of number
theory[35], this is the soonest incommensurable case of the
underlying model system, which could be emulated in a sys-
tematic way. In our studies we set the lattice constant of the
lower chain equal to 1scb=1d. Accordingly, the upper mean
lattice spacingca is equal toan and we calculated with the
system sizes

ca =
Nb

Na
=

89

55
,
233

144
,
377

233
,
610

377
,
1597

987
. s13d

It should be mentioned that not all ratios of the approximates
are “good” irrational number approximations. In order to dis-
cuss the essential features of the present model we restrict
the wide range of model parameters by settingkI

x=kI
y=1,

ksub
Ix =ksub

Iy =1, ands=1. For calculating the stable stationary
states we have used a relaxation procedure[15].

III. NUMERICAL RESULTS

A. Hull function

Similarly to the FK model[29] or FKT model [16], the
lattice structure of the particle positions in the incommensu-
rate ground state can be uniformly described by a hull func-
tion. For examining the lattice structure of the present two-
dimensional double-chain model, it is necessary to introduce
four hull functions due to two degrees of freedom of the
particles in each chain. The two hull functionsha andhc of
the upper chain are defined as

xi
a = i ca + f + hasi ca + fd, s14d

yi
a = bb + L0 + f8 + hcsi ca + f8d, s15d

and the two hull functionshb andhd of the lower chain are
given by

xi
b = i cb + c + hbsi cb + cd, s16d

yi
b = bb + c8 + hdsi cb + c8d, s17d

wheref, f8, c, andc8 are constant phases. Note thatxi
a, yi

a,
xi

b, and yi
b are the actual positions of the particles in the

ground state under the influence of the interaction. For our
investigations, it is convenient to setf=f8=c=c8=0. The
hull functions are periodic and even, which can usually be
expressed by

hasz+ cbd = haszd = − has− zd, hcsz+ cbd = hcszd = − hcs− zd,

s18d

hbsz+ cad = hbszd = − hbs− zd, hdsz+ cad = hdszd = − hds− zd.

s19d

The argumentz of ha andhc is defined in the range from 0 to
cb, whereas ofhc andhd it is given from 0 toca. Note that the
visualization concept of the hull function makes it necessary
that the arguments of the just-defined hull functionsha, hc or
hb, hd must be the same, respectively, because the displace-
ments in thex andy directions of all particles in each chain
can be assigned to different values of the argumentz due to
the irrational ratioa of the mean lattice spacingca andcb.

First, we have numerically calculated the ground state of
the double-chain model for a fixed ratioan=Nb/Na of par-
ticle numbers given byNa=233 andNb=377. Several inves-
tigations of the FK model[30] and FKT model[16] as well
as the two-chain model[15] showed that the ground state
depends strongly on the interaction strengthe. Therefore, we
started the computation for different values ofe in the wide
range from 0.05 to 0.4. For small values ofe up to a certain
valueec we get the result that the periodic hull functionsha,
hb, hc, andhd are analytic—i.e., smooth and continuous. This
behavior is illustrated in Fig. 2, where the interaction
strength has the valuee=0.22. Furthermore, the stationary
state fore=0.22 is characterized by the mean distanceL0
=0.986 273 between the upper and lower chains. Figure 3
shows another numerical calculation of the hull functions for
the interaction strengthe=0.33 with the corresponding mean
distanceL0=0.959 584. We can observe that the hull func-
tions in Fig. 3 are discrete, which means that they are no
longer analytic. This discrete structure is related to jumps,
which occur at certain points of the argumentz of the hull
functions. Now, comparison of Fig. 2 with Fig. 3 shows the
phenomenon of breakdown of analyticity, which is due to
two significant aspects of the hull functionsha, hb, hc, andhd
for the interaction strengthse,ec ande.ec, which defined
a certain transition valueec above which the hull functions
are no longer analytic. For a detailed analysis of the thresh-
old ec we introduced a suitable order parameter in the fol-
lowing part.

Peyrard and Aubry have shown[30] that the breaking of
analyticity of the incommensurate ground state of the FK
model is characterized by the existence of a largest central
gap at half the period of the hull function. The situation in
the two-chain model of Matsukawa and Fukuyama[13] is
quite different for several elastic parameters. Two simple
cases are observed:(i) eitherha or hb has the largest central
gap and(ii ) both hull functions do not have the largest cen-
tral gaps, but two symmetrical gaps with the same size refer-
ring to half the period. In Fig. 3 we observe also no largest
central gap for all hull functions of the two-dimensional
double-chain model. Furthermore, the hull functions show
also two symmetrical gaps of the same size referring to half
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the period of the hull function in the whole parameter range
analyzed. Up to now we have only investigated the ground-
state structure for a fixed system size(Na=233 and Nb
=377) and a certain range of interaction strengthe. Now, we

vary the system size of the underlying model which corre-
sponds the different approximation orders of the irrational
number through a rational ratio of the particle numbers.
Here, we calculated especially the ground-state structure for

FIG. 2. The hull functions of the ground state plotted for particle numbersNa=233 andNb=377 with interaction strengthe=0.22. For a
uniform representation all hull functions are renormalized by the mean lattice spacingscb andca, respectively. Therefore, the substitution for
the hull functionha andhc of the (a) chain isz→z/cb, whereas for the hull functionshb andhd of the (b) chain it isz→z/ca.

FIG. 3. Hull functions of the ground state fore=0.33 and particle numbersNa=233 andNb=377.
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the ratiosan=89/55, 233/144, 610/377, and 1597/987 in
the same range of interaction strengthe like above. In par-
ticular, we investigated whether there occurs an anomalous
behavior in the structure of the hull functions for certain
values ofe due to the use of a rational ratio instead of an
irrational number in the numerical computation. Indeed, Fig.
4 shows such an anomalous behavior of the hull functions
for e=0.33 and for the particle numbersNa=377 and 610. In
comparison with Fig. 3 we can recognize that the even par-
ticle numberNb=610 generates a “strange” particle position
at half the periodz=0.5 of hb in Fig. 4 and other special
points. Such not fully understandable artifacts can be also
observed for other ratiosan and interaction strengthe. On
the assumption that the main structure of the hull function is
conserved in course of the approachan→a` for a fixed in-
teraction parametere (at least above a sufficiently largen)
we conclude that only more details can be observed with
decreasing differenceuan−a`u. Thus, a change of the fine
structure—i.e., the creation of new small gaps may be
possible—but larger gaps observed first for smalln are fixed.
The appearance of pointlike artifacts in some gaps for a
given interaction energye can be observed for some values
of n. However, there is neither a stabilization of this phenom-
enon above a sufficiently largen nor a change of the main
structure of the hull function related to the appearance of
these artifacts during a systematic approachan→` [36].

Relating to the stationary state, Fig. 5(a) shows the mean
distanceL0 between the upper and lower chains as a function
of strengthe of the interaction force, which was calculated
for particle numbersNa=233 andNb=377. The plot in Fig.
5(a) shows the computation ofL0 for e in range from 0.05 to
0.45 and Fig. 5(b) showsL0 in the transition area. Note that

the mean distanceL0 is remarkably insensitive to the system
size. For the system sizesan=377/233, 610/377, and
1597/987 we find a deviation forL0=L0sad smaller
than 10−5.

B. Order parameter

Now, let us analyze the breakdown of analyticity near to
the thresholdec in analogy to a phase transition of the second
order. The first step towards a quantitative theory of continu-
ous phase transitions is to identify an order parameter by
which the phases involved in the phase transition are distin-
guished. Whereas the order parameter is zero in the disor-
dered phase, it is nonzero in the ordered phase. With regards
to the breakdown of analyticity, the nonzero order parameter
appears in the discrete phase, which measures the discrete
jumps in the hull functions. Our numerical results offer that
the breakdown of analyticity can be completely discussed in
terms of the hull function, instead of calculating the gap in
the phonon spectrum as done in[30]. In the casee,ec the
order parameter is zero whereas it is nonzero aboveec. Here,
we use the definition

F =

E
0

1 U ] fszd
] z

U2

dz

ds0d
, s20d

where fszd can be identified with one of the different hull
functions. The denominator is meant symbolically as a con-
tinuous limit. The calculations are performed in a discrete
version with a finite number of particles. In that caseds0d
behaves likeds0d,sDzd−1;Na. If the hull function is

FIG. 4. Artifacts in the hull functions for a bad choice of particle numbers—e.g., given byNa=377 andNb=610—and interaction
strengthe=0.33.
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smooth within the intervalf0,1g, the integral becomes finite
and the order parameter vanished due to the prefactords0d−1.
On the other hand, iffszd behaves like a Heaviside function
with a jump atz0, we obtain]zfszd,dsz−z0d and therefore
e0

1 f]zfszdg2dz,e0
1 dsz−z0d2dz,ds0de0

1 dsz−z0d,ds0d; i.e.,
the order parameter becomes finite. Due to the finite system
size, which divides the region of integration into equidistant
subintervalsDz=1/Na sDz=1/Nbd for the upper (lower)
chain, the integral in Eq.(20) is reduced to a sum over the
particle numbers. Therefore, we have intrinsic discontinuities
in the numerical computation, because the hull functions are
given by a discrete set of points. In order to suppress the
effects of these intrinsic discontinuities, we choose for the
numerical investigation the generalized order parameter like-
wise denoted asF:

F =

E
0

1 U ]4fszd
] z4 U2

dz

ds0d

;
1

sDzd6 o
k=2

sNb−2d
Na−2

sufk+2 − 4 fk+1 + 6 fk − 4fk−1 + fk−2ud2.

s21d

It should be mentioned that the order parameterF shows for
all hull functions f =hha,hb,hc,hdj the same qualitative be-
havior. Therefore, in order to present the basic features of the
phase transition(transition of the breakdown of analyticity)
it is enough to calculateF [via Eq. (21)] for one hull
function—e.g.,ha=haszd.

C. Scaling behavior

In this subsection we present the order parameterF, de-
fined by Eq. (21), for different system sizesan=89/55,
233/377, 610/377, and 1597/987. Figure 6 shows the order
parameter as a function of the interaction strengthe in the
transition region. The results indicate clearly that the order

parameterF changes from zero below the critical threshold
ec to a nonzero value aboveec for all particle number ratios.
This is clear evidence for a phase transition of the second
order. Using finite-size scaling arguments[37,38] for the
data, presented in Fig. 6, the order parameter can be rewrit-
ten as

Fse,Ld = Lb/dF̃„L1/dse − ecd…. s22d

Below ec there is no static friction. This result is in accor-
dance with[20–22] obtained by a completely different ap-
proach. Analyzing the data for different values of the system

FIG. 5. The mean interaction
distanceL0 in the y direction be-
tween the upper and lower chains
as a function of interaction
strengthe. The mean distanceL0

is plotted in different ranges(a)
from e=0.05, . . . ,0.4 and(b) from
e=0.24, . . . ,0.31 (transition
range).

FIG. 6. Order parameterFsedLb/d versusse−ecdL1/d.

FRICTION AND SECOND-ORDER PHASE TRANSITIONS PHYSICAL REVIEW E70, 046113(2004)

046113-7



size L (compare Fig. 6), we find that the order parameter
offers a scaling behavior in the vicinity of the transition re-
gime. That means that all curves for differentL offer a data
collapse. The corresponding master curve is depicted in Fig.
6. The system sizeL is determined by the particle numbers
55, 233, 377, and 987. In the transition region, characterized
by the reduced interaction strengtht=se−ecd /ec, we find that
the data of Fig. 6 are consistent with the following scaling
behavior fore.ec:

Fsed , Lb/dse − ecdb, s23d

where the critical exponents are given byb=0.239±0.05 and
d=0.687±0.05. From this we conclude the ratiom=b /d
<0.347±0.05. Due to the finite-size scaling, we obtain for
the threshold interaction strength of the transition of break-
ing of analyticity the critical valueec=0.25575±0.001.

IV. CONCLUSIONS

We have investigated the ground state for a two-
dimensional double-chain model with an incommensurate
lattice structure. We found that the structure of the hull func-
tions depends strongly on the strengthe of the interaction
between the upper and lower bodies. The breakdown of ana-
lyticity in the ground state for the critical valueec
=0.25575 was numerically observed. Furthermore, it was
shown that this type of phase transition could be uniformly
described by an order parameter. This order parameter rep-
resentation allows a systematic analysis of the critical behav-
ior for e.ec due to the calculation of the critical exponents.
Consequently, the peculiar breakdown of analyticity shows
all features of a second-order phase transition. As pointed out
in the Introduction, the breaking of analyticity(Aubry tran-
sition) offers a transition from an unpinned to a pinned state.
On the other hand, the relation between sufficiently small

mean velocities and the external forces can be written as[27]

v̄ ~ sF − Ftdz, s24d

wherez is a universal exponent andFt is the threshold force.
In the unpinned statese,ecd a ground state can be continu-
ously transformed into another ground state without any ex-
penditure of energy. Thus the threshold forceFt is zero for
e,ec. For e.ec the broken analyticity prevents a smooth
evolution between arbitrary ground states; i.e., we expect a
finite thresholdFt for this regime.

Furthermore, it should be remarked that our chain model
is a simple model structure, which established the macro-
scopic dry friction situation on the microscopic level be-
tween atomically flat surfaces by using a simply driven me-
chanical many-body system. It is convenient to define the
model as simply as possible in order to discuss some basic
features like the ground-state structure or the maximum
static friction behavior. The validity of the underlying model
system is given by the assumption of simple harmonic intra-
chain and Lennard-Jones interchain interactions. Referring to
the comparison with experiments, another natural extension
of the present model is to proceed to a three-dimensional
system, which is able to describe wearless dry friction be-
tween two atomically flat planes pinned in each case to a
substrate and embedding in a three-dimensional space.

We have only analyzed the situation for a fixed set of
elastic parameterskI. In further papers we will investigate
this model for a wide range of the parameter set—e.g., the
variation of the rigidity of one chainskb=1, . . . ,̀ d.
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